Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

   

Общеобразовательные

Вступительные задачи ФМШ при МГУ. Алфутова Н.Б. и др.

М.: 2017 - 220 с.

Сборник состоит из задач по математике, которые в разные годы предлагались на вступительных экзаменах в 10 и 11 классы школы им. А. Н.Колмогорова. Приводятся задачи разного уровня сложности по алгебре, геометрии и теории чисел.
 

 

Формат: pdf     

Размер:  1 Мб

Скачать:    Rghost  

 

 

 

 

 

Оглавление
К читателю 3
Основные обозначения 6
Тема 1. Делимость. Деление с остатком. Простые и составные числа. Решение уравнений в целых числах 7
Тема 2. Десятичная запись числа и признаки делимости 15
Тема 3. Квадратичная функция. Квадратные уравнения. Теорема Виета 23
Тема 4. Уравнения и неравенства 33
Тема 5. Системы уравнений и неравенств 41
Тема 6. Арифметические и геометрические прогрессии . 54
Тема 7. Текстовые задачи: движение, работа, проценты, целые числа 63
Тема 8. Логические задачи 74
Тема 9. Комбинаторика 84
Тема 10. Числовые оценки. Преобразование выражений 92
Тема 11. Неравенства. Максимум и минимум 100
Тема 12. Площадь 107
Тема 13. Окружности 117
Тема 14. Прямоугольный треугольник. Теорема Пифагора 127
Тема 15. Медианы, высоты, биссектрисы в треугольниках 136
Тема 16. Четырёхугольники 146
Тема 17. Геометрические задачи на неравенства и экстремум 156
Тема 18. Стереометрия 166
Приложения
Как поступить в СУНЦ МГУ 177
Программа по математике 178
Варианты вступительных экзаменов за последние годы 182
Ответы к задачам из разделов «Решите сами» 211
Ответы к вариантам последних лет 215



К школьникам, поступающим в школу-интернат имени А. Н. Колмогорова (полное название — Специализированный учебно-научный центр Московского государственного университета имени М.В.Ломоносова), предъявляются два основных требования. Во-первых, необходимо владеть знаниями, предусмотренными школьной программой. Во-вторых, нужно уметь решать нестандартные задачи. Здесь можно взять изобретательностью, упорством или знанием.
Откроем нашим читателям главный секрет. Идей и трюков, которые используются при составлении новых задач, конечное число (хотя довольно большое). За время существования школы было проведено огромное количество письменных и устных вступительных экзаменов. Все возможные идеи так или иначе уже были использованы, и придумать что-то принципиально новое очень сложно. Например, одну из самых красивых геометрических задач в этой книге (см. № 14.3) можно найти в «Книге лемм» Архимеда. Она предлагалась в 1970 году, и сейчас уже вряд ли кто-то сможет сказать, была ли она придумана заново или же позаимствована у классика.
 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

.

 

 

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

1. Начальная школа
2. Средняя школа - математика

3. Средняя школа - геометрия

4. Решение задач
5. ОГЭ - математика
6. ЕГЭ - математика
7. ГДЗ по математике
8. Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

 

 

 

Загрузка...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-200 Alexander Vasiliev , St. Petersburg,   Russia,   info@alleng.ru

    Rambler's Top100